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ABSTRACF 

This paper presents implemntation details of the 
Experimental Physic3 Interactive Control Syetem (EPICS). 
EPICS is used to control accelerated particle beams for 
high-energy physic3 experiments at the Fermi Rational 
Accelerator Laboratory. The tapics discussed are : 
interprocessor connauaication, support of beamline terminals 
aud devices, resource management, napping, various problems. 
some .aolutions to the problems, performance neaouremeat, and 
modifications and extensfo3s to RSX-11EI. 

This paper is the third of three related papera on the 
EPICS ayaten. The other two cover (1) the sqtea overviev~ 
and (2) the system structure and user interface. 

INTRODUCTION 

EPICS is implemented with RSXllH running an 
PD?-11'3. 

The hardware configuration (figure 1) includes tvo 
closely-coupled PDP-11'3: an 11/44 and an 11/34. 
The ll/44 is a level-2 computer that runs the user 
coxmnd language, utilities, and the device 
database. The 11134 is a level-3 computer that 
resds and writes beerzline devices and creates an 
interrupt environment for the level-2 computer. The 
computers are coupled with shared memory and a 
DRll -C intermpt link. The shared memory is located 
03 a shared UUIBUS. Also located on this shared 
UBIBUS are the aerial CARAC controller and TIMER 
controller. 

The serial CAHAC controller is a special-purpose 
controller providing access to serial CANAC. The 
CAUC system runs throughout the experimental areaa 
and supports modules for interfacing to beanline 
devices, terminala, and experimenter computers. The 
CAWtC systen does not provide asynchronous demands, 
30 the level-3 poll3 all CAMAC modules. The serial 
CAXAC controller reads conmands from and stores.data 
i3 shared nsmory. 

The TIKER is a second special-purpose controller 
that synchronizes the level-2 and level-3 computers 
to the external accelerator clock. The accelerator 
clock generates timing pulses that announce events, 
such as the atart of an accelerator cycle and 
delivery of beam to the experiments. The TI14ER 
re3ides on the prinary UNIBUS of the level-3 
computer. The CA&G controller and TIMER ar% 
level-4 computers. 
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Currently, the level-2 conputer run3 RSX-?1K and the 
level-3 computer 17108 a stripped-down version of 
RSX-11X that ie equivalent to RSX-11s. A separate 
ai3m03tiO aysten for the EPICS hardware run3 
RSX-11s on both cosputema. The level-3 conputer has 
110 disk. It is dounloaded from the level-2 computer 
by using the DR11-C, ahared memory, axid the 1 t/34 
boo’t ROM. 
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Fig. 1 EPICS Rardware Configuration V 
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I.YTER!'ROCESSOR COXX8NICATIOI 

The DRll-C and shared memLy are used for 
interprocessor coimunication. There at= three 
partitions in shared me%org: one owned by the 
level-2 cooputer, o;1e owned by the level-3 conputer, 
and one containing comnunicatiou queues. The 
initisticg task creates a message in shared memory, 
and sends it to another task via a comunication 
queue. Tie initiating task enters fork state and 
calls a coauunication routine to enqueue the message 
on a coomuuicatipn queue. When the receiving task 
is on the s9=Le processor, the communication handler 
enqueues the message ou the proper queue. When the 
receiving taak is on the other processor, the 
commmication haadler sends the address of the 
message, via the DRll-C, to the other processor. 
The conmnication handler on the target processor 
euqueues the message on the proper queue. If E task 
owns the cosuunication queue, the comunication 
handler informs the task about the arrival of a 
aesea~e by setting an. event flag or issuing an 
Aspchmnous System Triip (AST). The receiving task 
calls a routine to dequeue the message. The DRll-C 
A ana LI lntermpts are supported vith cosuect to 
interrupt routines (GIRTS) in au RSX task. 

.BEAELIBE'TERMINALS SUPPORT 

Piguts 2 shows the path through the system for 
access to a tersiual. The user command language 
(CBASIC) and the utility tasks issue QIO's that are 
supported wLth a ninimal driver and the Terminal 
Ancillary Co?ltrol Processor ( ACP) . The ACP 
comuaicates with the level-3 terminal handler via 
ahared-memory messages and cotxnunication queues. 
These messages are input and output lines. The 
level-3 teminal handler performs low-level 
processing, e.g. , local-echoing and intra-line 
editing, and schedules polling of the terminals that 
are physically connected via serial CANAC. 

BEARLINE DLYICE SUPPORT 

Figure 3 showa the path through the system for 
access to beamline devices. The utility tasks and 
CBA3IG issue 410’s that are supported with a minimal 
drive? and the Request Formatter ACP. The Request 
Fom3a:ter cosilnicates with the Disk Database Access 
task, and uaes the memory-resident device database 
to perform iaitial processing on the device access 
request. The Request Fomatter sends the request to 
the level-3 Request Handler via conxmnication queues 
snd shared nemory. This task converts the request 
into a command list and sends the command list to 
the serial CAXAC driver for execution on the serial 
CAUC aysten. Upon completion, the level-3 computer 
processes the data and sends it up to the utility 
task via the Request Formatter. 

Utilities 

Utilities are nonprivileged RSX tasks that typically 
erccuts QIO’s to create a device access request, 
transfer a data buffer, and delete the device access 
request. An exception to this is the Page utility 
which is 
updstes 

a nonprivileged task that repetitively 
EUXIY device readings 03 multiple terminals. 

There can be e naximrr of 8 page displays with 45 
device readings each. Page updates up to 24 of 
these readings every second, optionally updates 
another 24 devicee readings every 0.2 seconds, and 
modifies the page displays in response to user 
CO2ztnd3 . 
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2 Support for Peamline Terminals 

Fig. 3 Support for Beamline Devices 
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its device recotd is placed at tha end of ths LRU 
list. On the next accssa to the device, the Request 
Bomattor hashes the device record, finds it on the 
LRU list, resiovss it, and atatta using tbs device 
tscord without invoking DDL uhan ne* device 
records era beirtg loaded, DIM retrieves th3 
least-recmtly-used record from the front of the LRU 
list and uses it for the new device. Al.1 devices 
that are uo longer baing accessed are thus 
sveatually teaoved fro9 the database COZIUO~. 

haother area of resoqce manageaaot is sharing of 
data when two Or mar8 tea& requests are identical 
with rsspsct to the devise, attribute, and time. 
The EPICS system uaea a data structure in shared 
memory called the shared data point. The level-3 
cosputer stores the data in the shared data point 
vh8r8 the data is accessible by all proceasss that 
get data directZy from shared rrenrory. For exanple, 
the Page utility retrieves the aaua data IOr all 
us8re vhich Bra displaying .tha device. In addition, 
the level-3 cOmput8r distributes this data to all 
buifsrs fqr utilities that are ratrieving t’ns data 
in buffers. This nechanias’ gives us iswar data 
atX3ZChIre3 in 8har8d r~8mor3, ?Wer accgaa8s to the 
dWfC8, and fewer execbitfons OS routines that 
~rOc899 that data. 

R889UrC% nSnSg3iU8nt i8 applied t0 b8aZ?ilia8 t8Z?IiIiTlal 
support. Oa the level-3 computer, there are two 
polling rate3: slow aud fast, Uhen no one is using 
8 terniual, it is polled at the slow rate of once 
per second. When a user type9 the first character, 
the level-3 conputar starts polling the terizinal at 
the fast poll rate of 10 tin89 pel' 88COXld. Thera iS 
a tiueout of diva minutes agrpliid to fast pollitig of 
a terminal. If a uaer has not typed within thi9 
time p8riOd, the level-3 computer polls the terminal 
at the slow polling intenfal. 

R88Ourc8 naYlag83aat is implaseated via the concepts 
O? deffned terminals and active teminals. A 
defined temiual is on8 which has been idehfified to 
the EPICS'syste% and which is polled by the level-3 
computer. An active teninal is a teninal known to 
RSX through an assi$ned Unit Control, Block (UCB), 
yhen a user types at a dafiued tarniaal, the 
Temfnal ACP atterrpta to assign tha terninol ta 8 
teminal UCB, naking it an active terminal. This 
technique requires fewer UCB'a in pool and hence 
saves pool. Thhsre is also a timeout Of active 
terminals. If there ia no activity on an active 
teniual, it 58 dfSCOnn8Ct8a fron the UCB, 80 that 
the active tenainal port can be used for another 
definsd teminal. This tineout and the number of 
acttve telmrinals allows us to aupport the naximB 
aumber of concurrent users without excessive use Of 
POOL At the current time there are 24 defined 
terminals, 10 active telninals. and a timeout of 15 
nfMte3 On 8CtiV8 t iWdll&h 

The level-2 utilities inplemsnt resource management 
via ~ineouts and r@source quota% For elasple, the 
Database Editor cancsls aa editing s8asfoa if a user 
has typed no comnanaa vithin Its timeout period. 
Pa58 cancels 8 png8 display if it receives no 
conmands rroa the user vithin its timout period. 
The Watch utility applies quotas an utter requests. 
Each type of user is given a maxinuu nuuber of Watch 
resourcea that cab be used. For example, an .active 
experiment can watch more devices than an inactive 
one. 

MAPPING 

All tasks that accem the database comon and shared 
oeaory m.l& d;ms;lically map to thoes atsf 
Currantljr, the database corn09 is 16K worda h 
shared ELIOT is 44X k-de. 

The Disk Databasa Access task la a nonprtvile5ed 
task that raps to the dotebsse con&on vis RSX PI&S 
directives. 

To dacreaae the ampping time 3.n many bther tasks, 
the tasks nap directly. The tasks modify the 
conteuts of ths napping APB's oa the I/O psae. For 
a task to directly nodify its uapplng undar RSX, you 
nust disable context svitching. At the next context 
stitch, RSX will recalculate the valusa of the 
nspping ragistsrs for the task. One sinple solution 
is to -disable context svitching by nodiCyin~ the 
varisblo SCXDBL. Fhen nonzero, tha executive vLl1 
not svitch to running a diff8r8Dt task. So the task 
disables COnteXt switching, remaps 8nd processes, 
8Ra then raanablss context switching. The nsxt the 
that RSX switches the'ta9k out aad bsck in, mapping 
till be as descrlbsa iu the ninaoo blocks. 

Ye are starting to us8 another method for remapping 
a task. When huilaing the taak, ~9 allocat8 

.additiOnsL ‘window block9 with standard RSX Task 
Ruilder couanda. Wile the task is dng,'it 
nodifiea tha contents 'of its window blocks to 
ap3m.uy remap. This allows fast remapping and 
task snitching vhile the task executes the section 
of code in which it modifies napping. 

PROBLERS 

Rany of the technical problem that ue encounterad 
vere ralated to uapping. There were also some 
problena with RSX pool. A ninor problem was seen 
vifh incorrect use of ~WSTKS. 

Whea a task disables context snitchin for the 
purpooe of nodifyiug the napping, the task carrot 
iesua any RSX directive that leads to a context 
switch. This caused ninor problems ralatea to 
noraal use oi such directives: This caused uajor 
prohlena relate3 to use of th8 OD'i d8b!J&ng tool 
sime it issues such directives. 

Another problen with d+sabl& context svitching is 
that a task can monopolize the CPU. Additionally, 
you reduce your ability to tune th8 ‘system with 
standard RSX tuning Parantetars, such ag task 
priority. 

If you directly modify the napping *8gister3, never 
lpodify ApX a, It is napped to your task header. At 
minima, the Directive Status Uora (DS%) for your 
task is stored in your task header. The system 
coatiaues to update the location at the Off&t of 
ts8 xiu into APR 0. 

Aa-with u-y RSX-11N applications, we had typica 
problem vith pool. Great care wa9 r8qUird to 
achieve the larg8st possible pool. Other&se the-e 
vas not enouyh pool, especially on the ieval-2 
coaputsr. Additionally, when the amount af _ 
pool vas low, it became difficult or inPoesiba, ii 
diagnose or solve the problem. 

One ufnor problem vaa the use of a SUST'KS froo an 
illegal APR. In a 2OK executive, RSX processes a 
SUSECS by copying the user mapping registers 5 to 3 



t:, t&? corresponding kernal mapping regisers. The 
executive then transfers control to the code 
Tollowing the SKYi’i(%. If this code is in APR 0 
:hrough 4, the executive is not napped to your code, 
9nd it will execute whatever is at that location in 
the kernal address space. 

SOLUTIONS 

There are multiple solutions to the above problems, 
.,ome of which first became available during the 
,,evelopment of EPICS. 

,'onversion from RSX-1lE to RSX-llM+ on the level-2 
(:omputer may solve many problems, such as those with 
pool. We will use multi-user tasks to reduce the 
number of tasks and hence the amount of task 
swapping. Use of Instruction and Data Space gives a 
larger task address space and can reduce the amount 
of dynamic mapping. 

For dynamic mapping of a task's address space, we 
are increasing the usage of window blocks allocated 
by the Task Builder and modified directly at 
execution time. Another possible solution to some 
of our mapping problems is to use a VAX. 

To use ODT for debugging a task that disables 
context switching while it remaps, we added the 
ability to preserve the mapping of one task across 
task switches. When debugging a task, the task 
identifies itself ss the task for which mapping is 
preserved, and then remaps without disabling context 
switching. 

We can move the data structures associated with the 
Request Formatter ACP from RSX pool to M+ secondary 
pool or to another partition. Additionally, we are 
moving all date structures that need not reside in 
shared memory to other locations, thus using shared 
memory only when required. More effective use of 
this critical resource allows us to reduce 
allocation restrictions and to extend the automatic 
recovery timeouts. 

For tne communication handler and TIEER handler, we 
are converting to RSX drivers from the 
connect-to-interrupt mechanism. This reduces the 
time to handle en interrupt. Additionally, this 
removes the context switch which oc.curs when these 
devices are supported with an RSX task. The 
privileged tasks will enter fork state and directly 
queue commands to the drivers via the routine 
SDRQRQ. Future code can be nonprivileged end access 
the drivers vie QIO's. 

Newer versions of the compiler have features that 
allow us to write more code in PASCAL. This 
provide9 for faster implementation and more 
maintainable code. We currently have a 

.stripped-down PASCAL run-time system that we will 
use to write privileged code in PASCAL. For 
example, new versions of the Terminal .4CP will be 
coded in PASCAL. 

We are considering a modification to the code which 
supports SWSTK$, such that a PR:O task (privileged 
without being mapped to the executive) can execute a 
SWSTKO to enter fork state, provided the SWSTK$ code 
is located in APR 5 or 6 for a 20K executive. We 
will a190 check whether the task has executed the 
SYSTiiI from a legal .4PR. 

An improved method for support of critical sections 
between the Disk Database Access task and Request 
Formatter is the use of global event flaga. The 
task priorities can then be set according to 
relative processing priority of the tasks. 

We are migrating the low-level terminal processing 
from the level-3 computer to intelligent terminals. 
This reduces the level-3 computer load and provides 
better response to a user typing at the terminal. 
In many cases, these terminals can be supported by a 
local (level-5) computer, e.g., personal computer. 
This method provides even more power to the user and 
off-loads more functions from the level-2 end 
level-3 computers. 

PERFORMANCE EEASUREMENT 

To iricrease the real-time response of the EPICS 
system, ue measured performance in two ways. 

The first method involves attaching a logic state 
analyzer to the UWIBUS address liaes. 3y attaching 
the analyzer to the primary UEIBUS of the 11/44 or 
11/34, we ten obaerve relative execution of code on 
that processor. By attaching the analyzer to the 
shared UNIBUS, we can observe overall use of the 
shared memory by the 11/44, 11/34, and serial CAMAC 
controller. 

A second method involves use of a DRli-C attached to 
an oscilloscope via Fermilab equipment that 
condition9 the DRll-C signals. An EPICS task or 
driver sets end clears individual bits in the DRll-C 
register to indicate its execution and its states. 
The oscilloscope generates a trace of the reported 
activity. We thus get a more detailed idea of 
system activity and timing. 

MODIFICATIONS AED EXTENSIONS OF RSX 

To produce the implementation of EPICS that we have 
described, we made minimal modification9 end 
extensions to the executive. 

Currently there are two modifications to the system. 
First, the task switching code was changed to 
preserve the mapping of a single task across context 
switches. Second, we modified XDT on the:level-3 
computer so that the system would reboot without an 
operator-entered command, i.e., O command to XDT. 

Additional functionality was supported by extensions 
to the executive. During the- RSX system generation, 
we added routines for allocation and dsallacation of 
shared memory and for interprocessor communicatian. 
At system reboot; the RSX illegal instruction code 
is extended by loading code into pool and changing 
the executive code to branch to the neV code. We 
have programs to load and remove the illegal 
instruction code whenever necessary. 

As mentioned earlier, we will be modifying the 
SWSTK$ code to allow its use from a privileged task 
that is not mapped to the executive. 
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Many of the implementation techniques, such as the 
use af &S'S, special-purpose drivers, and fast 
execution of code are applicable to both RSX-I11 and 
to RSX-11?1+. This discussion is useful for 
time-critical RSX-flM applications on la-bit 
machines. some of the methods we used in 
implementing the EPICS control system can be avoided 
by uss of RSX-llM+. 

REFEREWES 

1. Bartlett, J.F., et al., "The EPICS System: An 
Overview", DECUS Proceedings, Fall 1983. 

2. West, R.E., et al., "EPICS System: System 
Structure and User Interface", DECKS Proceedings, 
Fall 1983. 

234 


